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We formulate dispersion relations for calculating the strength of the virtual rj —> 7r° transition and include 
contributions from all possible intermediate baryon-antibaryon states. In our approximation, the change in 
isospin is derived from the baryon electromagnetic mass splittings, other contributory causes being ne­
glected. The rj —» 3w decay rate is governed by the strength of this transition if, as is believed, the decay pro­
ceeds via virtual single pseudoscalar boson intermediate states. We recall that the contributions from the 
two sequences r\ —> (71-0) —»7r+-f-7r~+7r° and 17 —> ir+-\-iT-\- (y) —» 7r++7r~+7r° cancel each other exactly if the 
eightfold way interaction /h:X('7r-Tr+'nr})2 is used, and if the strength of the 77—71-° transition is taken to be 
independent of which particle is on its mass shell. Here this difficulty is resolved since our dynamical cal­
culation allows for the mass dependence of the 17—ir° "black box." Comparison of our provisionally evaluated 
result with that of a previous calculation on t\ —> 2? gives an estimate for the rj —> 2y/rj —•» 7r+7r~7r° branching 
ratio which is in satisfactory agreement with experiment. 

I. INTRODUCTION 

THE decay of the rj meson forms part of the 
general problem of electromagnetic effects in 

boson systems, and can thus be approached in two 
distinct ways. First, one can correlate the rates of some 
of the reactions by appeal to particular symmetry 
schemes (for the strong interactions) which accom­
modate the electromagnetic interactions in some defi­
nite and simple manner; this approach dispenses with 
assumptions about the specific mechanism for the in­
dividual reactions, but does depend entirely on the 
validity of the symmetry invoked, which in this paper 
is the eightfold way1,2 realization of unitary symmetry. 
Second, one can attempt to make a dynamical, ipso 
facto model-dependent calculation for any particular 
reaction, which should, in principle, be independent of 
the validity of any symmetry scheme; here we shall 
assume that the rj decays by primary virtual dissocia­
tion into bayon-antibaryon pairs. 

Our hypothesis that baryon loops dominate defines 
a model which must ultimately be judged by experi­
ment; to this end, calculations, on the same basis, of 
other radiative effects in pion systems are in progress. 
However, for 77 —> 37r and some other decays there exist 
also tentative a priori arguments in favor of this mecha­
nism; and we digress on them briefly, partly because 
the assumed dominance of such heavy intermediate 
states may appear strange at first sight. Therefore, we 
recall that as a rule exclusive concentration on the 
lightest intermediate state is appropriate only when 
seeking the structure of an amplitude, its absolute 
normalization being taken from experiment and in­
corporated as a subtraction constant. Here by con­
trast we try to calculate the subtraction constant itself; 
it is even conceivable that for this purpose the important 

states are those which dominate the spectral function 
at very high, rather than at very low, masses. Precisely 
this is illustrated in detail by the present model; one 
of our critical equations derives from the asymptotic 
behavior of the spectral function. 

Such calculations3 are all closely similar to the proto­
type Goldberger and Treiman approach4 to charged 
pion decay. The dominant intermediate state is chosen 
by the light of the Lagrangian analogy, which favors 
those states whose constituents are believed to appear 
directly in the relevant weak coupling; in other words, 
supposedly large "numerators" take precedence over 
small "denominators" in the dispersion integrals. For 
the particular case of radiative effects in pion systems, 
it has been shown6 that in a Lagrangian theory, with 
pions but no baryons, and with renormalizable electro­
magnetic couplings, an exact conservation law, that of 
amplitude parity,6 forbids processes in which the total 
number of (real or virtual) pions changes from even to 
odd or odd to even. Amplitude parity conservation is 
broken by the pion-baryon couplings; thus ^4-forbidden-
ness does not reflect on the strength of a transition, 
but it does imply that an A -forbidden transition rate 
cannot be found from first principles without intro­
ducing baryons into the calculation at some stage. For 
instance, suppose we assumed that rj —» 3T was domi­
nated by rj —•» (7+p) —* M —» 37r, the last being a 
strong step. To complete the calculation in terms of 
fundamental constants we should need the electro­
magnetic p—»?7+Y and p—>7r+Y rates; thus, though 
correlations between the different pion-radiative ampli-

1 M. Gell-Mann, Phys. Rev. 125, 1067 (1962). 
2 Y. Ne'eman, Nucl. Phys. 26, 222 (1961). 

3 B . Barrett and G. Barton, Nuovo Cimento 29, 703 (1963). 
4 M . L. Goldberger and S. B. Treiman, Phys. Rev. 110, 1178 

(1958) ; * m 111, 354 (1958). 
« G. Barton, Nuovo Cimento 27, 1179 (1963). 
6 L. I. Schiff, Proceedings of the International Conference on High 

Energy Physics at CERN, 1962 (CERN, Geneva, 1962), p. 690; 
and Phys. Rev. 130, 458 (1963). 
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tudes may be made in this way, the chain can be 
anchored to the fundamental constants of the theory 
only when baryon states are introduced. The present 
calculation of 97 —> 37r takes the simple-minded view, 
that failing contrary indications the baryons might as 
well be introduced immediately.7 

The 27 decay modes of the rj and ir° provide a clear 
example of processes which can be treated by the two 
methods outlined in the first paragraph, and to illus­
trate our general approach we recall here the results of 
previous work3-8 on rj—>2y. Cabibbo and Gatto9 de­
rived the relation 

grcfo -> 27) = (l/v3)9TC(7r° -> 27) (1) 

by considering the transformation properties of the 
electromagnetic current in the eightfold way; the conse­
quent relation between the widths is 

T(V -> 27) = i fa tMrOW -> 27) • (2) 

Inserting the results for r(7r°—>27) deduced from the 
most accurately observed values10 of the 7r° lifetime, we 
obtain 

r(7?~>27)-77_i5+25eV, (3a) 
or 

r fo-» 27)-140_2o+3° eV. (3b) 

The relation (2) may eventually be tested if the 
rj —> 27 rate is measured by means of the Primakoff 
effect11 and the discrepancy between the presently ob­
served values of the 7r° lifetime is resolved. The sensi­
tivity of the relation to deviations from unitary sym­
metry cannot, however, be estimated without a specific 
dynamical calculation, which is, of course, needed in 
any case for predicting the absolute values of the decay 
rates. Goldberger and Treiman12 assumed that the 7r° 
decays by primary virtual disintegration into a nucleon-
antinucleon pair which annihilates to form two photons, 
and obtained the result r(7r0--> 27) ==10 eV using the 
observed values of the pion-nucleon coupling constant 
and the anomalous magnetic moments of the nucleons. 
We have rederived3,13 the Goldberger-Treiman formula 
as a convergence condition on the dispersion integral, 

7 The A -parity considerations apply to rj —> 3TT and TT° —> 2y, 
but not to ?;—»2y, since 77 has the quantum numbers of an as­
sembly of four pions. Baryon dominance in rj —»2y represents a 
further extension of the hypothesis, which we have discussed 
elsewhere (Refs. 3, 13). Remark also that for 7r°—» 2y a model 
alternative to ours, namely, x° -» (w+p) —> 2y, meets with diffi­
culties when confronted with observation. [D. A. Geffen, Phys. 
Rev. 128, 374 (1962), and references given there.] 

8 S. Okubo and B. Sakita, Phys. Rev. Letters 11, 50 (1963). 
9 N. Cabibbo and R. Gatto, Nuovo Cimento 21, 872 (1961). 
10 R. G. Glasser, N. Seeman, and B. Stiller, Phys. Rev. 123, 

1014 (1961), found 7V>= (1.9±0.5)X10~16 sec; G. von Dardel, 
D. Dekkers, R. Mermod, J. D. van Putten, M. Vivargent, 
G. Weber, and K. Winter, Phys. Letters 4, 51 (1963), found 
TV0- (1.05±0.18)X10-16 sec. 

11 C. M. Andersen, A. Halprin, and H. Primakoff, Phys. Rev. 
Letters 9, 512 (1962); see also G. Bellettini, C. Bemporad, P. L. 
Braccini, L. Foa, and M. Toller, Phys. Letters 3, 170 (1963). 

12 M. L. Goldberger and S. B. Treiman, Nuovo Cimento 9, 
451 (1958). 

13 B. Barrett and G. Barton, Phys. Letters 4, 16 (1963). 
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• 7r+7r~7r° and K+ -FIG. 1. Diagrams considered for rj —> 7r+7r~7r° and K+ —> AV 1 " . 

In (a) and (b) the black box represents the electromagnetic rj—ir0 

transition, whereas in (c) and (d) the black circle represents the 
weak K—TT transition. 

and extended it to include contributions from all 
possible baryon-antibaryon intermediate states; the 
analogous calculation for rj —> 2y was also done. Since 
the pion-hyperon coupling constants, all the eta-baryon 
coupling constants, and the anomalous magnetic mo­
ments of the hyperons are not yet determined,14 we 
cannot in practice evaluate our results without invoking 
some general symmetry which predicts these numbers. 
If we set all the baryon masses equal, use the eightfold 
way predictions9'15 for the anomalous moments of the 
hyperons in terms of the neutron and proton moments, 
and use the eightfold way expressions1 for the pion-
baryon and eta-baryon couplings in terms of the pa­
rameter a (as in Sec. IV of this paper), our results for 
the 7T° —> 27 and r) —> 27 matrix elements satisfy the 
relation (1) exactly. The insertion of the observed 
baryon masses does not affect this ratio very appreci­
ably, and we find 

r(7r°->27)-2.5to3.7eV, 

T(rj-> 27)^30 to 60 eV 
(4) 

over the range of most reasonable values of a. We may 
expect, however, that deviations of the anomalous mag­
netic moments of the hyperons from the predicted 
values used may have a greater effect in violating the 
relation (1). 

Before formulating and carrying out our dynamical 
calculation for the rj~ ir° black box in Sees. I l l and IV, 

14 Two measurements have been made, both on the A, but they 
give conflicting results: R. L. Cook, E. W. Jenkins, T. F. Kycia, 
D. A. Hill, L. Marshall, and R. A. Schluter, Phys. Rev. 127, 
2223 (1962), reported JUA= —1.5±0.5 nucleon magnetons, whereas 
W. Kernan, T. B. Novey, S. D. Warshaw, and A. Wattenberg, 
Phys. Rev. 129, 870 (1963), found J U A = 0 ± 0 . 6 nm. 

15 S. Coleman and S. L. Glashow, Phys. Rev. Letters 6, 423 
(1961). 
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we consider in Sec. I I the eightfold way predictions for 
the vertices involved in the over-all amplitude for the 
decay 77 —-> Sr. 

II. THE 17-*0 TRANSITION AND THE EIGHTFOLD 
WAY PREDICTIONS FOR 17 -* 3* 

Kacser16 has surveyed the arguments concerning the 
striking relationships observed17 between the Dalitz 
plots for the three-pion decay modes of 77, 7, and r', and 
concluded that, barring coincidences, all these decays 
must proceed via a virtual intermediate single pion 
state.18,19 The diagram of Fig. 1(a) has been considered 
by several authors8,20; a crude value for the 7r°—> 3ir 
vertex is obtained by using the interaction 47r\(7r-7r)2, 
where X is the WTT coupling constant defined by Chew 
and Mandelstam.21 [Ideally, X should be replaced by 
the value which the analytic continuation of the wir 
scattering amplitude assumes at the symmetric point 
Si=s2=sz= (3m1

2+m2)/3.~] 
The 77— 7T° black box involves two electromagnetic 

interactions (which change the isospin from 0 to 1), and 
contains diagrams similar to those which contribute to 
the electromagnetic self-masses of members of the octet 
of pseudoscalar mesons. Okubo and Sakita8 have used 
the eightfold way relations9 

(K+\JJ\K+)=(T+\JJ\T+), (6) 

(K«\jj\K?>)=(ifi\jj\ifi)-^3(f,\jj\A, (7) 

to obtain 

1 

v3 (8) 

= - [ 5 4 M e V ] 2 , 

where 7 is the strength of the effective Lagrangian 
yrjir0. Taking the value X= - 0 . 1 8 ± 0 . 0 5 deduced by 
Hamilton et al.22 Okubo and Sakita give the result 

T (v -* TT+TT-TT0) «142_70
+90 eV (9) 

for the rate estimated by considering the contribution 
from Fig. 1(a) by itself. Hori et al.2Z however, have 
pointed out that the diagram shown in Fig. 1(b), in 
which the single boson pole is an 77, should also be in-

16 C. Kacser, Phys. Rev. 130, 355 (1963), and references given 
there. 

17 D. Berley, D. Colley, and J. Schultz, Phys. Rev. Letters 10, 
114(1963). 

18 M. A. B. B£g and P. C. DeCelles, Phys. Rev. Letters 8, 46 
(1962). 

19 G. Barton and S. P. Rosen, Phys. Rev. Letters 8, 414 (1962). 
20Riazuddin and Fayyazuddin, Phys. Rev. 129, 2337 (1963); 

131, 2840(E) (1963). 
21 G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960). 

After earlier confusion, we do now believe that this is the correct 
normalization of the -mr interaction, and thank Professor Okubo 
for helpful correspondence. 

22 J. Hamilton, P. Menotti, G. C. Oades, and L. L. J. Vick, 
Phys. Rev. 128, 1881 (1962). 

23 S. Hori, S. Oneda, S. Chiba, and A. Wakasa, Phys. Letters 5, 
339 (1963). We are grateful to Professor Okubo for referring us to 
this paper before it was published. 

eluded on an equal footing. Neither the structure of the 
77 —> 3x Dalitz plot produced by the TT° —» 37r vertex in 
Fig. 1(a), nor the comparison with K±—» 3T is neces­
sarily affected by this observation24 [since we must also 
include the additional diagram 1(d), as well as 1(c), 
for / decay]. Hori et al. note, however, that, with the 
eightfold way coupling 47rX(7r-7r+7??7)2, the contributions 
from these two diagrams will cancel, since they differ 
only in the sign of the propagator. However, this con­
clusion is valid only if the strength of the rj—7r° transi­
tion is taken to be independent of the propagating 
momentum, i.e., of which particle is on its mass shell. 
We shall find that the cancellation seems to be ade­
quately overcome, when, as in our dynamical calcula­
tion below, allowance is made for the mass dependence 
of the 77—7T° box. 

III. THE LEHMANN REPRESENTATION FOR 
THE 17-7*0 PROPAGATOR 

In general it is difficult to formulate satisfactory dis­
persion relations when unstable particles are involved. 
For our particular problem the boson pole approxima­
tion25 symbolized in Fig. 1(a) and (b) enables us to 
bypass these difficulties in the following way. The 
entire calculation proceeds, in principle, within the 
framework of renormalized perturbation theory, where 
adiabatic switching, at least of the electromagnetic 
couplings, is used to give meaning to the "incoming" 
single 77 state. (The 77 would be stable in absence of 
electromagnetic effects.) However, the strong four-
boson vertices are taken to include all possible Feynman 
diagrams; hence their connection with the renor­
malized, i.e., observed, irir amplitude or its analytic 
continuation. The 77—TT° black box is taken to include 
Feynman diagrams to all orders in all strong couplings, 
but only to leading, i.e., to first order in the fine struc­
ture constant, or alternatively, to first order in the 
observed electromagnetic baryon mass splittings. With 
these logical precautions the fact that the 77 is unstable 
does not intrude any further into the calculation of the 
77—-7T0 black box, and from now on we can, and do, 
ignore it. This will be especially important in Eqs. (14) 
to (26) below. 

Moreover, the perturbation theory framework identi­
fies the black box unambiguously in relation to the 
Fourier transform of a time-ordered product of the 

24 Hori et al. (Ref. 23) doubt whether the correspondence be­
tween the rj, T, and r ' Dalitz plots would continue to follow from 
boson-pole dominance in the exact eightfold way limit. We 
believe that this question cannot be plausibly settled at the 
present time, because it depends very delicately on cancellations 
between S and P wave components of the various four-boson 
vertices in the relevant diagrams, and because it will turn out 
below [see the comment following Eq. (70)] that even in the exact 
eightfold way limit these are not total cancellations. We feel that 
the problem merits more detailed consideration (it may even 
necessitate an estimate of the mass dependence of the K—ir 
black box), and may return to it in a subsequent publication. 

26 We make it plausible in the Appendix that the dominance of 
the boson-pole diagrams is compatible with our assumption of 
primary virtual dissociation into baryon-antibaryon loops. 
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interpolating fields. Let us denote it by a function 
F(k2) of the propagating momentum k; then, regarding 
for the moment both the rj and the w0 lines as internal 
lines, we have26 

* _TO_L_=G(F); 

where 
k2—m2 k2-p,2 

(10) 

G(ft2)= [d*(x-y)e-ik(°-«\0\T(r,(x)rf(y))\0). (11) 

We express this Fourier transform in terms of a 
Lehmann27 spectral function p(a2), and assume the un-
subtracted form: 

where 

G(k2)= fda2p(a2) , (12) 
J k2-a2+ie 

P(a2)=(2TM0\v\lM,qW°\0Mq-a). (13) 

Here 77=17(0), and the sum is taken over the inter­
mediate states I of four momentum q. We sum over all 
possible baryon-antibaryon (BE) intermediate states as 
well as over the rj and ir° particles themselves, and have 

p( a 2 ) = ( 2 7 r )3 S (0 | r 7 | M j ? ) ( M , | 7 r 0 | 0 )5 4 ( ^ - a ) 

+ (2*-)32<01 V J 7r°,̂ ><7r°,g. | TT° 10)54(gT- a) 
+<r(a2), (14) 

where a (a2) is just the contribution from the BB inter­
mediate states; the lightest of these is the proton-
antiproton pair of mass 2MP. 

Carrying out the summation in (14), we find 

p(a2) = RnKa2-m2)+RJ(a2-fj
2)+a(a2), (15) 

where 
Rv=(v,q\AOKV2q0y'\ 

RT=(0\v\AqXV2q0yi> 

(16) 

(17) 

(V is the normalization volume). Inserting (15) into 
(12), we have 

G(k2)- -R. 
k2—m2 

~Rr 

+ I data (a2) 
UMP

2 k2—a2+ie 
. (18) 

With the eightfold way boson coupling 47rX(7r-7r+77r?)2, 
the contribution of the diagrams of Fig. 1(a) and (b) 

26 Notation: We use natural units # = c = l , unrationalized 
coupling constants e2/4ir= 1/137, g2/4ir=15 etc., and the metric 
gOo=_gii==_^22__^33==^ The unlabeled letters M,m,n are 
reserved for the masses of the nucleon, eta, and neutral pion, 
respectively; the letters M and m with suffixes are used for the 
masses of other particles. 

27 H. Lehmann, Nuovo Cimento 11, 342 (1954). 

to the invariant matrix element for rj —»7r+7r~7r° is just 

32TTX ( r^( /e 2 ) -^- l | +[V(£2)-
IL k2—/rUUw2 L h -»rJ k2^ 

= 32irX[i2,+Ji:J = 32ir\JR (19) 

[and we have exact cancellation if F(ix2) = F(m2) = 7] . 
Our formalism, then, involves two unknowns, the 

strengths Rv and R* for the 77—7r° transition when the 
rj or the TT° are, respectively, on their mass shells. 
Although, with the pure eightfold way boson coupling 
used above, we ultimately require only the sum R 
= RV+RW obtained in Eq. (19), we shall find that i?„ 
and RT enter again, and separately, in our approxima­
tion for d(a2), so that we do in fact need two simul­
taneous equations, which we can obtain by considering 
the canonical equal time commutation rules of the rj 
and 7T° fields and their sources. 

For the vacuum expectation value of the commutator 
of the rj and ir° fields we write 

(0\fo(x),ifi(y)l\0)=iA'(x-y) 

= fda2p(a2)iA(x-y\a2), (20) 

where A(x—y\a2) is the usual A function for free par­
ticles of mass a. Taking 3>=0, differentiating with re­
spect to x0, and setting #o=0, we have 

/oil"—(x,o)y(o)]|o\ 

- da2p(a2)i—A(x\a2)\ = 
J dxo U0=o J 

da2cp(a2)id(x). (21) 

Since this equal time commutator for two different 
fields vanishes,28 we have found 

0= dap(a2). (22) 

The second of the two equations needed to calculate 
i?T and 2?, could be obtained along parallel lines by 
considering the commutator of the 17 with the source 
Jr of the 7T° field: we use the equations 

(n y
J+/ i *V(y)=/ . (y) , 

(DI/
2+a2)A(x-y|o2) = 0, 

(23) 

(24) 
28 If we were to regard the rj as a composite particle built up 

from the pion fields, we should argue that the equal time com­
mutators in (21) and (26) are small, i.e., of the order of magnitude 
of the 7r7r coupling constant X; then, since the matrix element 
%\l(rj —>37r)ocjRX, our neglect of the equal time commutators is 
equivalent to carrying out the calculation of 91Z(̂  —> 3ir) to first 
order in X. Alternatively, if we regard all operators as ordered 
products (which is in any case necessary for self-consistency), 
then the relevant equal time vacuum expectation values all 
vanish. 
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to write 

(0[[r,(x),JT(y)3\0) 

= i J ^2jo(a2)(-a2HV)A(x-;y|a2), (25) 

and again differentiate with respect to %o to obtain 

^o|̂ (x,0),J.(0)J|o ,̂ 

= i fda2p(a2)(-a2+p/
2)d(x) (26) 

giving28 

0= fda2(a2~ix2)p(a2). (27) 

From Eqs. (15), (22), and (27) we derive the two basic 
equations 

R,+R,+ [do**(a*) = 0, (28) 

m2Rv+fx
2Rir+ / data2*(a2) = 0. (29) 

At this point it is convenient to digress somewhat in 
order to forestall the following difficulty that may be 
encountered if one proceeds directly from these equa­
tions. One of the crucial relations to be used below is 
the convergence condition on (29), i.e., 

lim aAa(a2) = 0. (30) 
a2->oo 

But taken together with (28) and (29) itself this makes 
three equations for the two unknowns Rv and Rr (since 
the R's themselves occur in a), which may be mutually 
inconsistent. Such an inconsistency can be avoided by 
a method originally devised to deal with a similar situa­
tion in the Goldberger-Treiman formulas for ir+ —» \xv 
and 7T°—> 2y; we refer to our previous paper3 for a de­
tailed physical interpretation of the procedure in these 
closely analogous cases. 

The method is best displayed by refocussing attention 
on the propagators. From this viewpoint (22) can be 
written as 

lim k2G(k2) = [da2p(a2) = 0, (31) 
&2-»00 J 

while (29) becomes 

lim k2G(k2) = [da2a2p(a2) = 0, (32) 
7c2->oo J 

where G(k2) is the mixed propagator constructed from rj 
and DV0. Underlying (32) is the assumption that G(k2) 

satisfies an unsubtracted Lehmann representation : 

G(k2) = fda2a2p(a2)/(k2-a2). (33) 

Moreover, (32) shows that G(k2) vanishes at infinity 
faster than 1/k2, i.e., faster than (33) would indicate 
explicitly at first sight. The crucial procedure in avoid­
ing inconsistencies is to relax by one step the require­
ments on the behavior of G(k2) at infinity. Thus, in­
stead of (32), we demand only that \imk^[k2G(k2)~] 
exist as a finite constant. In view of (33) this implies 
that J*da2a2p(a2) < <*>, whence 

lim a4p(a2) = 0. (34) 
a2->oo 

Equation (34) is the same as the convergence condition 
(30) of the original version. However, no inconsistency 
can now occur, since one of the three equations is taken 
up in determining the otherwise undefined numerical 
value of \\rak^^[k2G(k2)~]i which is of no further rele­
vance to the problem in hand. We should note also that 
the development leading to Eq. (22) is not affected by 
the question of the asymptotic behavior of G(k2). 

At the start of this important digression on the 
problems of convergence and inconsistency, we referred 
to our earlier paper3 in which similar problems were first 
encountered. It is worth emphasizing, however, that in 
contrast to the case of the Goldberger-Treiman formula 
for 7T° •—> 2y, the convergence condition here does not 
uniquely determine the numbers of interest, Rv and 
RTT. Thus, even if the high-energy behavior of the spec­
tral function a (a2) is well approximated by our model, 
the results remain sensitive to the behavior of <r at 
low energy. 

IV. EVALUATION OF THE SPECTRAL FUNCTION 

For clarity, we first perform the calculation with 
nucleon-antinucleon states only, and then extend the 
result to include contributions from all baryon-anti-
baryon states. 

We write the neutron-antineutron and proton-anti-
proton contributions explicitly 

<i(a2)= (2TT)3 £ l(0\7i\nn)(nn\T°\0)d\a-n-n) 
M0\v\tf)<PP\**\0)*(a--p-p)l. (35) 

Here £ implies summation over momenta and spins, 
and half the sum of | in) and | out) states is taken to 
ensure that the correct reality conditions are satisfied 
automatically in this approximation. If isospin were 
conserved the nn and pp contributions would cancel; 
apart from a contribution in terms of Rv and RT them­
selves, we shall take into account only those i-violating 
effects which derive from the observed baryon electro­
magnetic mass splittings. The restriction to the mass-
splitting contributions is inspired by convenience; it is 
made partly to illustrate and test the model and partly 
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to provide a first estimate of the result. In order to see 
roughly what the approximation involves, consider the 
diagrams containing a closed baryon loop, and a photon 
line anchored at both ends to the baryon lines. Out of 
these diagrams we take into account those in which 
the photon line gives rise to a baryon self-energy insert; 
we leave out those diagrams in which the photon line 
leads to a "renormalization" of a (strong) vertex. A 
more dispersion-theoretic way of phrasing this is, that 
in our spectral function we allow for the phase space 
differences dictated by the observed neutron-proton 
mass splitting, but take no account of any other electro­
magnetic contributions to nucleon-antinucleon scatter­
ing, such as the Coulomb interaction between p and p. 

We define 

(0\ Jr\nn in) 

- ( • 

) v(n)y6(gKnT°+Pnl)u(n), (36) 
V V2n0nQ 

(0\J„\ppm) 

- ( • 

M2 v'2 

my*(gKpi»+Ppi)"(P), (37) 
V2Popo/ 

where JT(x)= (D2+At2)7r°(x). Here we are considering 
the 7r to be a particle of definite isospin 1=1, and are 
explicitly separating the ir°nn and 7r°pp form factors into 
the strong, isospin-conserving parts Kn[_{n-\-nY] and 
Kp[(p+p)22, and into the electromagnetic, isospin-
violating parts Pn[_(n-\-nf] and Pp[_(P+P)2l- We take 
Kn(n2) = Kp(fJ?)=zl9 so that g is just the pion-nucleon 
coupling constant (and Pn(fj

2) = Pp(jj
2) is the correction 

8g considered by Riazuddin and Fayyazuddin20). Simi­
larly, we define 

(0\Jv\nnm) 

- ( • 

M2 Y'2 

J v(n)y6(gLnl+HnT°)u(n), (38) 
V2n0no 

(0\Jv\ppin) 

- ( • 

M2 y/2 

2popo< 
J my*(MLpl+Hp7»)u(p), (39) 

V2PoVo/ 

where Jv(x)= (n2+m2)rj(x). Here the L's are the 
strong interaction form factors, normalized to Ln(m

2) 
= Lp(m

2)=lf and g is the eta-nucleon coupling constant 
(analogous to g). 

The summation over spins and momenta involved in 
Eq. (23) gives (putting s=a?) 

<r(s) = crn(s)+(Tp(s), (40) 

where 

<Tn(s)--
1 /s-AM A 

8ir2A * / (41) 

XReL(gLn(s)-Hn(s))(Pn*(s)-gKn*(sm, 

-4M„V /2 
1 / J - 4 M A 1 ' 

8ir2A s / (42) 

XRel(gLP(s)+Hp(s))(PP*(s)+gKp*(sm. 

We combine these equations to write a in two parts ; 
where the nil and pp contributions tend to cancel, we 
write 

ai(s)=—ReZL(s)K*(s)l 
8TT2 

1 f /s-4M 2\1/2 / * - 4 M n
2 \ 1 / 2 l 

xi(-ri -(-7~) 1 <43) 

and neglect the distinction between Ln and Lp, Kn and 
Kp, i.e., we work to first order in isospin-violating terms. 
For the same reason, in the second part we neglect the 
neutron-proton mass difference, and write 

a2(s) = — RelgH(s)K*(s)+gL(s)P*(s)l 
4TT2 

xi~r> (44) 

(M is the mean nucleon mass). We also neglect the 
remaining second-order terms H(s)P*(s). 

The evaluation of the form factors is similar to the 
dispersion relations treatment of Goldberger and Trei-
man12 for the 7r° —* 2y amplitude. We define 

J = (-^T) <°lAl#Pin> 
\ M p

2 / 
= v(Phs(gL+H)u(p), (45) 

and in the standard way obtain the absorptive part 

1/FM1 '2 

Aj^=—iir) S«(P)<o|/,|?> 
2\MP/ <j 

X(q\f\p)(2TYHq-p-p). (46) 
In the sum over intermediate states we include the 
single pion, and proton-antiproton and neutron-anti-
neutron pairs; then 

1/FM 1 / 2 

Aj.„=—(• ( 2 T ) « 
2\MP/ 

xWo\J,\*°,q)m(Aq\f\pMq-P-P) (*?) 
+Z(0\J,\p'p>)v(p)(p>p>\f\p)8*(p'+p'-p-p) 

+2(0\Jn\n'n')v(p)Wn'\f\p)5i(n'+n'-p-p)}. 
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In the first term we use the definition (16) and obtain 
the contribution 

Imi:gL(s)+H(s^=-n^(m"-s)8(s~^), (48) H(s) = gR„-

The second term in (47) involves / , f 3 , itself, and we 
have the familiar result 

H(s), which gives 

(m2—fx2) 1 

(*-

~H£) 1 r tan0( 
h - / dsf 

M2) TTJ S' 

t a n k s ' ) ReH(s') 

Im£ML(s)+H(s)l**= Rel(ML(s)+H(s))pp*l, (49) 

where 
Pp=ei8*sindp, (50) 

and 6P is the phase shift for proton-antiproton scattering 
in the ^ o state. The third term in (47) would similarly 
be expressed in terms of the phase shift for charge-
exchange (pp —> nn) scattering; we note that this is 
observed to be very small29 and therefore neglect the 
contribution to AjVp of the nn states. 

We combine the contributions of (48,49) to write 

I m Q £ + f l > -TgRr(nfi-s)6(s-v*) 

+Re[(gL+Jff)/3p*]; (51) 

the corresponding treatment of the matrix element 
(0\ J n\nn in) gives 

I m [ g L - ^ ] = +TgRT(m2-s)8(s~fJ
2) 

+Re[ (2L- jy ) /3„*] , (52) 

where #»= ei8n sin<5n, and 8n is the lS0 phase shift for nn 
scattering. Adding these equations (and neglecting 
second-order isospin-violating terms), we have 

I m L = | R e [ L ( / 3 / + / 3 / ) ] = R e [ L / 3 * ] ; (53) 

this is the standard result of the approximation which 
ascribes the s dependence of the strong interaction form 
factor entirely to nucleon-antinucleon rescattering. The 
solution of the subtracted dispersion relation 

L(s) = l-
ImL(s') —«r r 

/ ds' 
ir J (s'—m2)(s'—s—ie) 

is just the Omnes30 function 

(s—m2 r $(/) | 
L(s) = exp\ / ds' \ 

i T J (s'-m*)(s'-s-ie)\ 

(54) 

(55) 

(with tan<£= Re£/(1—Im/S).) We refer to the arguments 
given in the paper3 on the Goldberger-Treiman for­
mulas to justify the approximation L(s)~l which we 
shall again make here. 

Subtracting (52) from (51), we obtain the equation 
for the first-order i-violating terms: 

I m # = -TgRT(tn2--s)d(s--fx2)+Re(HB*) 

- B R e C g Z O V ^ n * ) ] . (56) 

We postulate an unsubtracted dispersion relation for 

29 J. G. Loken and M. Derrick, Phys. Letters 3, 334 (1963). 
30 R. Omnes, Nuovo Cimento 8, 326 (1958). 

+ — / dsf-
2TT, 

s—te 

tan0P (V) — tan$ n (s') 
(57) 

We again argue3 that the low angular momentum phase 
shifts for nucleon-antinucleon scattering should be pre­
dominantly imaginary, so that <j> is small and we can 
approximate the Omnes exponentials by unity, i.e., 
that we can drop the second term in (57). We need, 
however, to compare the third term with the first 
(pion pole) term, and a very rough estimate31 suggests 
that the third term can also be discarded. We thus have 

B(s) = gRx-

and the analogous result 

i ^HZ* , 

S~fXz 

r i 2 — f 

• r 

(58) 

(59) 

for the isospin-violating part P of the pion-nucleon 
form factor. 

We insert the results (58,59) and the approximations 
L(s) = K(s)=l into Eqs. (43,44) for the contributions 
to the spectral function, and obtain [[dropping m2, 
fj?(<^s^4M2) in the denominators] 

1 r [/s-^MJV'2 /s-4:Mn
2\^2} 

'w-d*l(—) -(—) I 
2(OT2-M2)A-4Jf2Y'2 

'<- ') 
(l'R,-r«,) • (60) ] • 

To first order in the mass difference 8M==Mn—MPy the 
basic equations (22) and (34) (with s—a2) give 

gg dM m2—/x2 

0=R„+R„+ + (g2R*-?Rv), 
4TT2 M 3M2 

and 
0=4ggMdM +2{m2-^){g2R7r-fR,), 

from which we obtain the solutions 

R. 

RK — -

g2+g' 

gg 

8M-] 

6TT2 MS 

which give 

r 2M8M 1 

+ 
!L m2—/j? 6n 

r 2M8M 1 SM~l 

L OT2-M2 6x2 MS 1 SM 

6TT2 M 

(61) 

(62) 

(63) 

(64) 

(65) 

a i B . Barrett, thesis, Oxford University, 1963 (unpublished). 
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We now add in the contributions to the spectral 
function from all the other BB states32; Eq. (60) is 
replaced by 

/s-4AfyV
2 i 2(«»—/«») /5-4 i l f / \» 2 

5 ;' 
(66) 

(The factors £y take count of the multiplicities of the 
different baryqn multiplets.) In the first sum, which 
represents the "inhomogeneous" term of our equation, 
the violation of isospin is caused by the electromagnetic 
mass splittings of the baryon multiplets, and we have 
contributions from NN, 22 and S3 states; we have 
written M*+, Mi- for the masses of the components of 
larger, smaller z components of isospin. In the second 
sum, which represents a "homogeneous" or "damping" 
term, we have contributions from all BB states which 
can be coupled strongly to either the rj or the 7r°; the 
AA state, for example, which is coupled strongly to 
the rj, is also coupled electromagnetically to the ir° by 
the rj pole term, and gives a term proportional to 

Inserting (66) into (22) and (34), we find 

21/ gi}ig' 

m L \ m? (E' w ) " 
R.=-

1 I 

MX m'—n* 6x2 

Zjiiigrngj) 
(67) 

and an analogous equation for Rx [compare (63) and 
(64)]; their sum is just 

1 8Mi 
R= E #*#**—-• 

6ir2 i Mi 

(68) 

We note that this very simple result is not very 
different from that obtained by including only the mass 
difference contributions to <r(s), i.e., dropping the 
damping terms, and using (22) alone, which would give 

1 SMi 
R= E gv&riT—' 

4TT2 i Mi 

(69) 

There is no trace of saturation in (68), i.e., there are no 
coupling constants in the denominators, contrary to 
the characteristic appearance of the Goldberger-Trei-
man formulas4'12 for 7r+ and 7r° decay. Moreover, R is 
independent of the rj and ir° masses. This is perhaps not 

32 S. P. Rosen, Phys. Rev. 132, 1234 (1963), has pointed out 
that the contributions to the t\—TT° transition from various dia­
grams involving baryon-antibaryon pairs tend to cancel if the 
eightfold way symmetry is exact. His remarks do not apply to the 
mass difference contributions considered by us. 

so surprising if we recall Eq. (19); we have to calculate 

F(m2) Fdi2) dF{x)\ 

dx 

+ terms of higher order in (m2—fx2), (70) 

and the expansion may be justified since the char­
acteristic mass involved in <r(s) is Af2)>>/x2. 

It is amusing to envisage the situation that would 
obtain in the hypothetical limit as unitary symmetry 
becomes exact. The denominators (m2—^2) would then 
approach zero, but they would be cancelled exactly by 
the corresponding factor in the numerator (dF/djj2) 
X (m2~ix2). In the limit the cancellation produced by 
the unitary symmetry23 is analogous to the conventional 
mass-renormalization in electrodynamics. The leading 
term of the remainder is analogous to the conventional 
wave-renormalization constant; here it would be finite 
even in perturbation theory (i.e., even without applying 
the Goldberger-Treiman procedure), since the fact that 
two different fields are involved appears throughout to 
have reduced the degree of divergence by one. Thus, a 
nonzero electromagnetic mixing of TJ and ir° is pre­
dicted even in the exact unitary symmetry limit; by 
contrast it would appear intrinsically unreasonable to 
envisage situations in which either ni2=n2 but the 
couplings are not given exactly by the eightfold way, or 
in which the couplings are given exactly by the eight­
fold way but m2= /̂A 

We give a provisional estimate33 of the result of our 
dynamical calculation by using the eightfold way 
couplings1 

girNN = g , gi2\W = V3"(l —J0f)g, 

gxS2=2(l-a)g, g„ss= (2a/\3)g, 

g*ZZ=(l-2a)g, g,EE=-V3(l-fa)g, 

g.SA= (2a/A%, £,AA= ~ (2a/V%, 

(71) 

to evaluate Eqs. (67) and (68); in the most reasonable 
range of values34 0.5 ̂  a ̂  0.9 we find 

22,~(2to4)X10-», 

R,'—(lto2)X10-2, 

# ~ ( - 1 . 0 t o - 1 . 4 ) X 1 0 - 2 . 

This result for R gives 

r(»7—> Tr+x-7r°)~140 to 280 eV 

(72) 

(73) 

(74) 

(75) 

for the width of the t\ —* 7r+7r"~7r° decay when both the 
diagrams Fig. 1 (a) and (b) are included. We note that 

» We take the value hM%=M<^--M%^^-\-^ MeV [J. Leitner, 
(private communication)]; we note that this is the value pre­
dicted by the eightfold way relation of Coleman and Glashow 
(Ref. 15). However, H. Schneider, Phys. Letters 4, 360 (1963), 
found i fs°=1325±5 MeV, which gives 5 A f s = - 5 ± 5 MeV. 

34 The couplings used in Ref. 3 are given by gD=ag, gF— (1 —a)g. 
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this is not very different from the estimate (9) obtained 
by considering diagram (a) only, and using the strength 
of the 77—7T° transition predicted in terms of the electro­
magnetic mass splittings of the K and w. Comparison 
of our results (75) and (5) gives reasonable agreement 
with experiment35 for the branching ratio T (TJ —» 2Y)/ 
r(?7->7r+7r-7r0). 
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APPENDIX 

We obtain a crude estimate of the ratio of the partial 
amplitude for the direct process rj —» NN —> 3x to that 

85 C. Bacci, G. Penso, G. Salvini, A. Wattenberg, C. Mencuccini, 
R. Querzoli, and V. Silvestrini, Phys. Rev. Letters 11, 37 (1963); 
F. S. Crawford, L. J. Lloyd, and E. C. Fowler, ibid. 10, 546 (1963). 

for the boson pole processes considered in this paper. 
It is assumed that the order of magnitude of the four-
boson couplings can reasonably, if roughly, be ascribed 
to latent baryon loops. Then the direct t\ —> 3TT coupling 
is estimated as (5M/M)(g/g)47rX(iprVjr), where 8M/M 
enters as the cause of isospin violation, and (g/g)4:ir\ 
by comparison with the ordinary (TT-TT)2 vertex, the 
latter also being pictured as induced by closed NN 
loops. Thus 

SMg 
19fTC 0? -> TT+TT-TT0, direct) | — 8TT\ . (Al) 

M g 

For the pole diagrams we have from Eqs. (19) and 
(74) 

19fTC(i7 -» TT+TT-TT0, poles) I - \R(32TT\) I -32TTX10-2 . (A2) 

Hence, 

19H (direct) I 8M/M g 1 g 
< ~3X 10-2-. (A3) 

19fTC(poles) J lO-2 #4 g 

Current estimates of the eightfold way mixing pa­
rameter a indicate that g/g is probably small; but even 
without this factor (A3) appears to make it plausible 
that the pole terms dominate. This reverses the asser­
tion in the paper of Barton and Rosen19 that nucleon 
loops do not naturally lead to pion pole dominance. 


